“AI(人工智能)技术在药物研发中的应用引起了科研院所和医药行业的极大关注。AI已经开始赋能药物研发的各个阶段,如靶标发现和确认、药物先导化合物的发现和优化、药物药代动力学和毒性评价等,将成为未来药物研发的关键核心技术之一。”7月12日,中国科学院院士、中国科学院上海药物研究所研究员姜华良作了题为“人工智能分子模拟与药物研发;d”,2022年第二次科学讲座《理解未来》。
讲座中,姜华良介绍了国际创新药物研发的进展和趋势。他认为小分子药物有一些关键问题需要AI来解决。比如结合自由能的计算速度比过去提高了3-5倍,只有速度提高到数万倍,结合自由能的预测精度和小分子药物的设计效率才有望实现本质的突破。
在姜华良看来,制药领域投资高、周期长等痛点很难在短时间内得到改善,但AI在预测临床候选药物成功率方面将大有可为。“在临床试验中,大约10种候选药物中只有一种会试验成功,而我们已经积累了数万种药物的临床数据,其中包含了大量过去临床试验失败药物的一般数据。通过建模和计算,我们可以预测和排除临床候选药物中的失败药物,更好地锁定可能成功的药物。”姜华良说。
北京大学化学与分子工程学院教授、北京大学理学部副主任高在讲座中表示,传统的分子模拟在应用于化学、生物等复杂分子系统时,受到时间和空间的严重限制。以深度学习为代表的AI技术可以建立理论与计算、理论与实验、计算与实验的有机联系,成为突破传统分子模拟瓶颈、赋能分子模拟和分子科学的重要工具。
据介绍,高团队基于物理模型、科学实验数据和人工智能算法,开发了多项与深度学习相结合的分子模拟方法,并在全球蛋白质结构预测大赛(CAMEO)中取得优异成绩。
但AI在药物研发中的应用还处于起步阶段。蒋华良表示,要开发专门用于药物研发的新型AI技术,并与传统药物分子设计和实验技术紧密结合,真正为药物研发赋能。
以小分子药物的设计为例,高提到,数据是制约小分子药物设计的最大瓶颈。“目前真正能获得的可靠数据很少,数据上还存在一些问题,比如指标不一致,敏感数据难以获取”。
本次讲座主持人、未来论坛理事长、北京大学李兆基讲座教授谢晓亮也表示,目前已有部分企业采用自由能计算代替大规模小分子药物筛选,并且在实验中还采用了微流控筛选技术来增加通量,从而大大降低了成本。然而,由于小分子数据量不足,数据库不够,无法实现小分子药物的机器学习预测,这对小分子药物的设计是一个巨大的挑战。
高认为,通过整合单细胞组学信息,建立可靠的细胞反应模型,AI可以对药物研发的下游做出一些预判工作。“如果通量足够高,该细胞模型可用于预测小分子的膜进入、蛋白质信号转导、蛋白质的核转运等。大分子药物设计和小分子药物设计。随着AI的不断自我学习和优化,预测的准确率会逐步提高。
终于改了!618前,手机淘宝正式改名为淘宝。记者发现,目前在AppStore等各大应用商店里,原来手机淘宝APP的名称已经变成了淘宝。据悉,这是
2021-05-27 16:54太火爆了,工厂订单已经排到了下个月!5月26日,犀牛智造计划排产总监陈哲发了一则朋友圈。天猫618预售启动后,一批尝试即卖即产服饰商家销
2021-05-27 16:55为提振投资者信心,美的近来真的很努力。对于意兴阑珊的资本市场,这家家电巨头接连打出了回购牌、增持牌以及王炸——进军新能源汽车产
2021-06-01 10:42日前,有网友向工信部提交信件表示:把动能回收功能与加速踏板相结合,让加速踏板具有明显制动效果这一设计违背常理、违背汽车百年驾驶习惯
2021-06-01 14:35如今消费者选购空调时,除了基本的温度调控功能,更多人倾向关注附加了自清洁、除菌、新风、净化、舒适等健康理念和功能的产品,但这些
2021-06-04 14:43